

CoherentPaaS
Coherent and Rich Peas with a

Common Programming Model

ICT FP7-611068

Table Oriented
Cloud CEP
Design
D7.1

March 2014

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 2/30

 2

Document Information
Scheduled delivery 31.03.2014
Actual delivery 11.04.2014
Version 1.0
Responsible Partner UPM

Dissemination Level:
PU Public

Revision History
Date Editor Status Version Changes
14.03.2014 Ricardo

Jiménez
Draft 0.1 table of contents

19.03.2014 Valerio
Vianello

Draft 0.2 First internal draft

21.03.2014 Ricardo
Jimenez

Draft 0.3 Internal draft

24.03.2014 Marta
Patiño

Draft 0.4 Internal draft

25.03.2014 Valerio
Vianello

Draft 0.5 Version for peer review

01.04.2014 Ricardo
Jimenez

Draft 0.6 Revision incorporating reviewer
comments

02.04.2014 Valerio
Vianello

Draft 0.7 Revision incorporating reviewer
comments

02.04.2014 Ricardo
Jimenez

Draft 0.8 Internal review

02.04.2014 Valerio
Vianello

Draft 0.9 Final Draft

03.04.2014 Marta
Patiño

Draft 0.91 Final Draft

10.04.2014 Valerio
Vianello

Draft 0.95 Revision incorporating reviewer
comments

11.04.2014 Ricardo
Jimenez

Final 1.0 Final Delivery

Contributors
Ricardo Jiménez, Valerio Vianello, Marta Patiño

Internal Reviewers
Martin Kersten(MonetDB), Raquel Pau (Sparsity), Vassilis Spitadakis (Neurocom)

Acknowledgements
Research partially funded by EC 7th Framework Programme FP7/2007-2013 under
grant agreement n° 611068.

More information
Additional information and public deliverables of CoherentPaaS can be found at: http://
coherentpaas.eu

http://coherentpaas.eu/
http://coherentpaas.eu/

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 3/30

 3

Glossary of Acronyms

Acronym Definition
D Deliverable
DoW Description of Work
EC European Commission
PM Project Manager
PO Project Officer
WP Work Package
EPL Eclipse Public License
SPE Stream Processing Engine
TCP Transmission Control Protocol
CEP Complex Event Processing
DBMS Database Management System
SQL Structured Query Language

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 4/30

 4

Table of Contents
1. Executive Summary .. 6

2. Storm Overview .. 7

2.1. Stream ... 7

2.2. Spout .. 7

2.3. Bolt ... 8

2.4. Topology .. 8

2.5. Storm Cluster ... 9

2.6. Parallelism of Topologies ... 10

2.7. Communication Mechanisms .. 11

3. Architecture Overview .. 14

3.1. Global view ... 14

3.2. CEP Query Operators ... 14

3.2.1. Stateless Operators .. 15

3.2.2. Stateful Operators .. 17

3.3. CEP database operators .. 19

3.4. CEP query compiler .. 20

3.5. CEP query deployer .. 20

4. CEP Query Language .. 22

5. Materialization Support ... 25

6. Integration with Holistic Transactions ... 27

6.1. Transactional Read Consistency for CEP ... 27

6.2. Transactional Write Consistency for CEP .. 28

6.3. Integrating Transactional Management ... 28

7. References ... 30

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 5/30

 5

List of Figures

Figure 1 ɀ Stream of tuples. ... 7

Figure 2 ɀ Storm Spout with two streams. .. 8

Figure 3 ɀ Storm Bolt with two input streams and one output stream. 8

Figure 4 ɀ Example of Storm Topology ... 9

Figure 5 ɀ Storm Cluster [5] ... 10

Figure 6 ɀ Storm Topology at the task level [5] .. 11

Figure 7 ɀ Overview of a worker's internal message queues in Storm [9] 12

Figure 8 ɀ Example of Map Operator .. 15

Figure 9 ɀ Example of Filter Operator .. 16

Figure 10 ɀ Example of MoFilter Operator ... 16

Figure 11 ɀ Example of Union Operator .. 17

Figure 12 ɀ Example of Aggregate Operator with time based Sliding Window, size 3 and
advance 3 ... 18

Figure 13 ɀ Example of Join Operator with time based Sliding Window of size 3 19

Figure 14 ɀ An Example of transformation from a SQL-like query to the corresponding
CEP Query .. 20

Figure 15 ɀ Example of MaterializeStream Operator ... 25

Figure 16 ɀ Example of snapshot value propagation ... 28

List of Tables
Table 1 ɀ Aggregate operations available on windows. .. 23

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 6/30

 6

1. Executive Summary
This deliverable presents the architecture of the CEP subsystem and its integration with
the holistic transactions and the other data stores of the CoherentPaaS architecture. The
main issue solved in this deliverable is the impedance mismatch between the CEP
system and the point-in-time queries used in the data stores.
This impedance is solved by a combination of two techniques. The first technique lies in
the introduction of CEP database operators that enable to access CoherentPaaS data
stores. Operators allow correlating events with data stored in any cloud data store (e.g.
enrich the event with stored information, or check whether there is a corresponding
stored record in a data store). The second technique lies in enabling the use of the
output of a CEP query by the data stores queries. This technique lies in materialization
operators that can store the output of a CEP query in a CoherentPaaS data store.
The CEP system consists of several components: query compiler (generates the code of a
query from a SQL-like query description), query deployer (deploys a query in a running
system) and CEP engine (processes the events by means of the deployed queries). In
logical terms, it has a set of operators that are classified as regular CEP operators, and
the additional operators we mentioned earlier: database operators and materialization
operators.
In order to ease the use of the CEP, instead of forcing the application developers to learn
to use them, we have created a SQL-like language to formulate the CEP queries. The CEP
compiler takes care of transforming queries written in the SQL-like language into CEP
queries using the CEP operators. Since the operators by the underlying CEP system,
Storm are too low level, relational algebra operators will be developed on top of storm,
and SQL-like queries will be translated into these operators.
The deployer then takes care of deploying the generated query on a particular setup.
Finally, another important integration point with the project contributed by this
deliverable lies in how to integrate with the holistic transactions. Two mechanisms have
been introduced for this. The first mechanism provides read consistency for events
when no transactional context is specified by the developer. This read consistency
ensures that the events stemming from an event injected by an event source will read a
consistent snapshot when they read from the CoherentPaaS data stores. The second
mechanism enables to associate a transaction to a batch of events, so each time a batch
of events stemming from these events reach a database operator they are written to the
database as part of a transaction to guarantee all-or-nothing semantics for the set of
related events (e.g. several tuples coming from a set of windmills in a wind farm that we
want to store in an all-or-nothing manner).
Finally, the technical architectural solution to integrate with the transactional system is
discussed and one alternative is chosen lying in using a JDBC driver that has as main
advantage that failures in the CEP system do not force recovery on the transactional
system.

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 7/30

 7

2. Storm Overview
Storm is the distributed, reliable and fault-tolerant computation system currently
integrated into Twitter architecture and several other companies [1]. Twitter acquired
the social media analytics company that developed Storm and they decided to release it
as an open source project on GitHub [2] under the Eclipse Public License (EPL) [3] in
2011. Storm is a stream processing engine (SPE) that can process on-the-fly data coming
from different data sources to produce new streams of data as output.
Storm is implemented in Java. Out of the box Storm provides several artefacts and
functionalities, in the following of this Section these concepts are introduced:

¶ Stream
¶ Spout
¶ Bolt
¶ Topology
¶ Storm Cluster
¶ Parallelism of Topologies
¶ Communication Mechanisms

2.1. Stream
A stream is an infinite sequence of tuples, ordered on time, with the same schema
(Figure 1). A tuple represents an instantaneous occurrence of an event of interest in a
system at a certain point of time. Each and every tuple of a stream has a pre-defined
schema (A1, A2, ȣ , AN), where Aj defines the type of the j-th attribute of the tuple. Storm
allows the user to define custom types for the schemas having the constraint that these
new types must be serializable. Furthermore, Storm makes available several built in
types for stream schemas such as: integer, long, short, byte, string, doubles, float,
boolean and byte array.

Figure 1 ɀ Stream of tuples.

2.2. Spout
Spouts are the Storm components in charge of feeding the initial streams with tuples.
These tuples can be either generated by the spout itself or fetched/received from
external data sources. In Storm there are two types of spouts: reliable and unreliable
spouts. The former is a spout able to replay a tuple if Storm detects a failure during its
processing. At the contrary, unreliable spouts forget about tuples as soon as they leave
the spout. Spouts can emit tuples on any number of streams (Figure 2).

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 8/30

 8

Figure 2 ɀ Storm Spout with two streams.

2.3. Bolt
In the Storm architecture, bolts are the basic unit of processing. They provide all the
mechanisms needed for managing any number of input and output streams but it is up
to the user to add the business logic (Figure 3).

Figure 3 ɀ Storm Bolt with two input streams and one output stream.

2.4. Topology
A topology is the top-level abstraction to do computation on Storm. Topologies are
direct graphs with input and output edges representing input and output streams. Each
node of the graph is either a spout or a bolt. An edge ÏÆ ÔÈÅ ÇÒÁÐÈ ÂÅÔ×ÅÅÎ ÔÈÅ ÎÏÄÅÓ ȰÎȱ
ÁÎÄ ȰÍȱ ÍÅÁÎÓ ÔÈÁÔ ÔÈÅ ÏÕÔÐÕÔ ÓÔÒÅÁÍ ÏÆ ÎÏÄÅ ȰÎȱ ÉÓ ÔÈÅ ÉÎÐÕÔ ÓÔÒÅÁÍ ÏÆ ÎÏÄÅ ȰÍȱȢ

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 9/30

 9

Figure 4 ɀ Example of Storm Topology

Figure 4 shows an example of a topology where the spout Spout1 sends tuples to the
ÂÏÌÔ Ȱ"ÏÌÔρȱ ÁÎÄ ÔÈÅ ÓÐÏÕÔ Ȱ3ÐÏÕÔςȱ ÔÏ ÔÈÅ ÂÏÌÔÓ Ȱ"ÏÌÔςȱ ÁÎÄ Ȱ"ÏÌÔσȱȢ &ÕÒÔÈÅÒÍÏÒÅ ÂÏÌÔ
Ȱ"olt4ȱ is subscribing to ȰStream Aȱ and ȰStream Bȱ, ȰBolt5ȱ is subscribing to ȰStream Cȱ.
Storm Topologies can be seen as continuous queries over the data coming from data
sources (spouts). Topologies run continuously over Storm producing results each time
the input data is processed by the bolts of the topology.

2.5. Storm Cluster
The Storm Cluster is defined as the whole set of nodes and processes used to execute
topologies. The nodes of a Storm Cluster can be of three types: (i) Master node, (ii)
Worker node and (iii) Zookeeper node.
In a Storm Cluster there can be one and only one Master node with the Nimbus daemon
running on it. The Nimbus daemon (a Storm process) is in charge of distributing the
topologies code around the cluster, assigning tasks to the Worker nodes and monitoring
the failures.
Unlike the Master node, there must be at least one Worker node per Storm cluster. Each
Worker node is controlled by a Supervisor daemon (a Storm process). The Supervisor
daemon can run several worker processes and it assigns work to them based on what
the Nimbus daemon has established. A worker process belongs to a specific topology and
it can run some of its components (spouts and bolts).
Zookeeper nodes are used to deploy a Zookeeper cluster [4] which maintains all the
configuration information and naming conventions. Zookeeper provides the Nimbus and
the Supervisors with distributed synchronization and group services. Additionally,
Nimbus and Supervisor daemons are fail-fast and stateless. In fact, they immediately
report any failure and the whole Storm Cluster state is kept in Zookeeper. If they die,
they will restart like nothing happened.

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 10/30

 10

Figure 5 ɀ Storm Cluster [5]

2.6. Parallelism of Topologies
Storm architecture allows spouts and bolts to be executed in parallel. This means that
when the tuple rate on the input streams overcome the processing power of a single
node, a topology can be deployed on multiple nodes taking advantage of the distributed
processing power. Storm gives support for both inter-topology and inter-operator
parallelism. With the inter-topology mechanism, the operators (built on top of spouts
and bolts) of a topology can run on different machines. With the inter-operator
mechanism, a single operator can be executed on multiple nodes. In any case, the result
of the parallel-distributed execution would be the same result produced by the same
topology executed standalone in only one node.
The parallelization management is accomplished in Storm with three entities:

¶ Worker process: this process runs in a Worker node controlled by the Supervisor.

Each worker can run one or more executors of a topology.
¶ Executor: an executor is a thread spawned by the worker process. Each executor

runs one or more tasks of the same operator.
¶ Task: A task performs the actual data processing.

According to the Storm documentation the number of tasks of an operator is always the
ÓÁÍÅ ÄÕÒÉÎÇ ÔÈÅ ÌÉÆÅÔÉÍÅ ÏÆ Á ÔÏÐÏÌÏÇÙȟ ÈÅÎÃÅ ÔÈÅ ÃÏÎÄÉÔÉÏÎ ȰΥ ÅØÅÃÕÔÏÒÓ Љ Υ ÔÁÓËÓȱ ÉÓ
always true. The default configuration says to Storm to run one task per executor. Tasks
are mainly used to assign and rebalance the load of a topology on the Storm cluster [6].
Figure 6 shows a topology with tasks set for each component. In particular there is a
spout with 2 tasks and there are three bolts with respectively 4, 3 and 2 tasks.

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 11/30

 11

Figure 6 ɀ Storm Topology at the task level [5]

3ÔÏÒÍ ÕÓÅÓ ÔÈÅ Ȱstream groupingȱ ÐÒÏÔÏÃÏÌÓ Én order to route the tuples when the
components of a topology are defined with multiple tasks. The stream grouping
protocols are used to instruct the Storm cluster on how a specific stream should be
ÐÁÒÔÉÔÉÏÎÅÄ ÁÍÏÎÇ ÔÈÅ ÏÐÅÒÁÔÏÒȭÓ ÔÁÓËȢ There are several built-in stream groupings in
Storm [7] and it also allows users to define their own stream grouping protocols. The
most interesting protocols are:

¶ Shuffle grouping: tuples are evenly distributed across all the tasks of an operator.
¶ Fields grouping: the stream is partitioned by the fields specified in the grouping

and tuples with the same value in these fields are always sent to the same task.
¶ All grouping: the tuples of the stream are replicated and sent to all the tasks.

2.7. Communication Mechanisms
In a Storm Cluster there are three types of communication mechanisms. The most
common one is the Intra -worker communication also named internal messaging. This is
the messaging mechanism used by the executors of a worker process to communicate
among them. Storm implements this communication by means of the LMAX Disruptor
[8], which is a high performance inter-thread messaging library.
Figure 7 from [9] describes the internal messaging communication of a worker process
giving emphasis to the management of queues.

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 12/30

 12

Figure 7 ɀ Overview of a worker's internal message que ues in Storm [9]

In Figure 7 two types of queues can be distinguished, the worker process queues are
coloured in red and the ones belonging to the executors are coloured in green. Each
worker has two threads for managing its incoming and outgoing tuples. The Receive
thread listens on a TCP port and puts the incoming tuples in the corresponding queue.
On the other hand, the Send thread reads messages from the worker transfer queue and
sends them over the network to downstream workers.
Each executor controlled by a worker has its own incoming and outgoing queues. The
Receive worker thread is also responsible of moving tuples from the worker input queue
to the corresponding executor incoming queue. It is worth recalling that a specific
worker can control multiple executors. Finally, the executor has its own Sending thread
thÁÔ ÓÅÎÄÓ ÔÈÅ ÅØÅÃÕÔÏÒȭÓ ÏÕÔÇÏÉÎÇ ÔÕÐÌÅ ÆÒÏÍ ÔÈÅ ÏÕÔÇÏÉÎÇ ÑÕÅÕÅ ÔÏ ÔÈÅ ÐÁÒÅÎÔ ×ÏÒËÅÒ
output queue.
The other communication mechanisms used in the Storm Cluster are:

¶ Inter-worker communication: this form of communication goes through the

network because normally happens across machines. Storm can be configured
either with ZeroMQ [12] or Netty [13] from version 0.9.0. These protocols are
used when a task in a certain worker wants to send data to a task running
in worker process of a different machine in the Storm Cluster.

¶ Inter-topology communication: this type of communication refers to the
communication among topologies that is, an operator belonging to a specific
topology sends a tuple to an operator running in other topology. Currently Storm

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 13/30

 13

does not provide any implementation for this communication scenario and it is
up to the user its implementation.

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 14/30

 14

3. Architecture Overview

3.1. Global view

Section 2 presented Storm, a stream processing engine (SPE) that provides an
infrastructure for doing high performance and reliable parallel distributed computation.
The goal of this Section is to present the architecture of a Table-oriented Complex Event
Processing (CEP) engine that can be built on top of a SPE infrastructure such as Storm. A
Table-oriented CEPs are defined as Complex Event Processing engine able to read and
write raw data from/to external data storages and to materialize the results of
continuous queries in such data storages.

One of the main issues we have faced is the impedance mismatch1 between CEP queries
that are continuous and SQL queries that are point-in-time. A CEP query is deployed and
then is delivering results continuously till is decommissioned. However a SQL query (or
any other kind of query like the ones in NoSQL data stores) is a point-in-time query that
processes existing data and delivers the result.

In order to solve this impedance mismatch we have integrated two new mechanisms.
The first one enables CEP queries to correlate events in real-time with data stored in any
of the CoherentPaaS data stores. The second one enables CEP engines provide the users
with the capability of easily defining continuous queries for the detection of meaningful
events over raw data. These queries, combining data from multiple data sources, can
infer patterns of events with much higher semantic information than the simple events
generated by the data sources.
Operators are the building blocks of continuous query processing and they can be
clustered in the following categories:

¶ CEP query operators. They provide the basis for supporting CEP queries.
¶ CEP database operators. They enable to correlate events with information stored

in CoherentPaaS data stores.
¶ CEP materialization operators. They allow storing the output of CEP queries in

CoherentPaaS data stores.

The first two categories are described in the rest of this Section and the CEP
materialization operators are described in Section 5.

3.2. CEP Query Operators
The standard CEP operators are: Map, Filter, Union, Aggregate and Join, according to
[10][11]. These operators, along with the MOFilter operator, which is a generalization of
the Filter operator, can be divided into two categories: stateless and stateful. In what
follows we provide the specification of the operators that we will develop for our table-
oriented CEP.

1
Impedance mismatch is a common term in computer science to denote a mismatch between two paradigms. It

has been heavily used for instance to refer to the different scopes of the object and relational models. See

http://www.agiledata.org/essays/impedanceMismatch.html

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 15/30

 15

3.2.1. Stateless Operators

Stateless operators process each tuple independently. The operator output tuples, if any,
only based on the information in the current tuple. Stateless operators´ logic enables to
perform transformations on individual tuples, they provide basic processing
functionalities such as filtering and projection transformations.

¶ Map: it is a generalized projection operator defined as:

-ÁÐɉ3Ɋ Є ɑ !ȭ1 = f1 ɉÔɊȟ !ȭ2 = f2 ɉÔɊȟ Ȣ Ȣ Ȣ ȟ !ȭn = fn (t) , O}

It requires one input stream and one output stream. The schema of these two
streams may be different. The Map transforms each tuple t on the input stream S
by applying a logical and/or arithmetic expression (fi) . The resulting tuple with
attributes !ȭ1ȟ Ȣ Ȣ Ȣ ȟ !ȭn where, !ȭi = fi (t) , is sent through the output stream O. Figure
8 shows an example of Map operator using three expressions to transform tuples
from the input stream S into tuples of the output stream O. The operator
transforms the schema of the tuple from (In1, In2, In3, TS_In) to (Out1, Out2,
TS_OUT) according to the expressions: Out=In1+In2, Out2=In3 and TS_Out=TS_In.

Figure 8 ɀ Example of Map Operator

¶ Filter: it is a selection operator defined as:

Filter(S) = {(P(t) , O)}

The Filter operator requires one input stream and one output stream with the
same schema. It verifies the match of tuples t on the input stream S with the user
defined predicate P. When P(t) is satisfied the tuple t is emitted on the output
stream O. Figure 9 shows an example of Filter operator. In this example the
operator emit on the output stream O only the tuples (whose schema is In1, In2,
In3, TS_In) that satisfy the condition In1==X1 OR In2==Z2.

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 16/30

 16

Figure 9 ɀ Example of Filter Operator

¶ MOFilter: it is a selection and semantic routing operator defined as:

MOFilter(S) = {(P1(t) , O1), (P2(t) , O2), . . . , (Pn(t) , On)}

The MOFilter operator requires one input stream and at least one output stream,
all with the same schema. The MOFilter emits a tuple t on all the output streams
Oi for which the user defined condition Pi(t) is satisfied. Figure 10 depicts the
scenario where a MoFilter operator receives tuples from the stream S with
schema (In1, In2, In3, TS_In) and it routes on the output stream O1 those tuples
for which the predicate In1==X1 is true and on the output stream O2 those one
which verify the condition In1==Z1.

Figure 10 ɀ Example of MoFilter Operator

¶ Union: it is a merger operator defined as:

Union(S1, S2, . . ., Sn){O}

The union operator requires at least one input stream and only one output
stream, all with the same schema. It is used to merge different input streams Si
with the same schema into one output stream O. Figure 11 shows the Union
operator in example scenario. The operator takes two input stream S1 and S2,
with the same schema (In1, In2, In3, TS_In), and it inserts the received tuples in
the output stream O according to their arrival order.

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 17/30

 17

Figure 11 ɀ Example of Union Operator

3.2.2. Stateful Operators

Stateful operators keep into sliding windows the tuples received from one or more input
streams during a specific amount of time. These operators are the ones that are more
distant from Storm functionality, which does not provide any support for sliding
windows. Their output is a function of all the tuples stored in the window. Sliding
windows are volatile memory structures defined by three parameters:

¶ Size: defines the capacity of the window.
¶ Advance: defines how much slide the window when this becomes full.
¶ Type: defines how the window must slide, either based on time or on the number

of the stored tuples.

For tuple based sliding windows, the size parameter is expressed as the maximum
number of tuples that can be kept in the window. For time based sliding window, the
size parameter sets the size of the window in terms of seconds. The window is slid any
time the difference in time between the newest tuple and the oldest one is greater than
the window size.

There are two types of stateful operators: Aggregate and Join.

¶ Aggregate: it computes aggregate functions (e.g., sum, average, min, count, ...) on

a window of tuples. It is defined as:

!ÇÇÒÅÇÁÔÅɉ3Ɋ Є ɑ !ȭ1 = f1(t ,W)ȟ Ȣ Ȣ Ȣ ȟ !ȭn = fn(t ,W) , s, adv, t, Group-by(A1, . . . , Am), O}

The aggregate operator accepts only one input stream and defines one output
stream. It supports both time based sliding windows and tuple based sliding
windows. Parameters s, adv and t define the size, the advance and the type of the
sliding window. The Group-by parameter indicates how to cluster the input
tuples; that is, the operator keeps a separate window for each of cluster defined
by the attributes (A1, . . . , Am). Any time a new tuple t arrives on the input stream
and the sliding window of the corresponding cluster is full, the set of aggregate
functions {fi}ÉυЉÉЉÎ are computed over the tuples in that sliding window W and on
the current tuple t . The resulting tuple with attributes !ȭ1ȟ Ȣ Ȣ Ȣ ȟ !ȭn where, !ȭi = fi(t

,W), is inserted in the output stream O. Finally, after producing the output tuple,
all the windows are slid according with the advance adv parameter. Figure 12
shows an example of the Aggregate operator with t time based sliding window of
size 3 and advance 3 (This means that any time the window is full a new tuple is
emitted and the window is emptied). Tuples on the input stream S have the
schema (In1, In2, TS_In) while output tuples are produced according with the

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 18/30

 18

schema (Out1, Out2, TS_Out). The operator inserts the first 3 tuples in the window
without producing any output because the difference in time between the first
and last received tuple is smaller than the window size (size=3 and difference =
2). When the operator receives the forth tuple, it inserts the tuple in the window
and detects that the windows has become full. At this point, the operator applies
the functions (Out1=Sum(In2), Out2=Count() and TS_Out=LastVal(TS_In)) over all
the tuples kept in the window and finally it emit the resulting tuple on the output
stream O.

Figure 12 ɀ Example of Aggregate Operator with time based Sliding Window, size 3 and advance 3

¶ Join: it correlates tuples coming from two input streams. It is defined as:

Join(Sl,Sr) = ɑ!ȭ1 = f1(t ,Wl,Wr),.. ȟ !ȭn = fn(t , Wl,Wr) , P, wl, wr, Group-by(A1, .., Am), O}

The join operator accepts two input streams and define one output stream. Sl
identifies the left input stream and Sr identifies the right input stream. P is a user
defined predicate over pairs of tuples t l and t r belonging to input streams Sl and
Sr, respectively; wl and wr define the size and the advance of the left and right
sliding windows while de group-by defines the clustering as in the aggregate
operator. In order to be deterministic the join operator only supports time based
sliding windows. In the following we consider the simplified situation where the
group-by parameter is empty and there is only one sliding window per stream.
For each tuple t l received on the input stream Sl (respectively t r from stream Sr)
the concatenation of events t l | t i is emitted on the output stream O if these
conditions are satisfied:

(1) t i is a tuple currently stored in Wr (respectively in Wl)
(2) P is satisfied for the pair t l and t i (respectively t r and t i)

The attributes !ȭ1ȟ Ȣ Ȣ Ȣ ȟ !ȭn of tuples that are indeed inserted in the output stream
O are a subset of the concatenation of events t l | t i where, !ȭi = fi(t ,Wl,Wr). After
that all the output tuples triggered by the tuple t l (respectively t r) received on the
input are produced, the sliding window Wr (respectively in Wl) is slid according
with the advance parameter. Figure 13 shows an example of Join operator. The
operator is configured with a time based sliding window with size 3. The input
streams S1 has the schema (In1, In2, TS_In) and S2 (In3, In4, TS_In) while the
output stream O has the schema (Out1, Out2, TS_Out). When the first event is
received from stream S1,, the operator does not produce any output because there
is no match among the tuple received on the left stream and the window defined

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 19/30

 19

on the right stream (actually it is still empty). Then, the operator inserts this tuple
in the left window. The same happen to the second tuple received from S1 with
timestamp TS2. Instead, when the first tuple arrives from stream S2 , with
timestamp TS2 , it is matched with one of the tuples kept in the left window and
the first output event is emitted. The same happens when the tuple with
timestamp TS5 arrives from stream S2. This time the tuple matches with 2 events
kept on the left window (with timestamp TS3 and TS4) hence 2 events are
emitted on the stream O.

Figure 13 ɀ Example of Join Operator with time based Sliding Window of size 3

3.3. CEP database operators
Database operators are able to perform operations on any CoherentPaaS data store
using data received from continuous streams of tuples. These operators offer basic
functionalities such as persisting and retrieving tuples to/from an external storage
system. The cost of these operators in terms of latency of the operation is expected to be
greater than the CEP query operator cost due to the response time of traditional DBMS
that is known to be greater than the time needed for in memory processing operations.
All the database operators must be configured at least with the driver needed to reach
the remote instance of the CoherentPaaS data store and with the table name used for
reading/writing tuples. The following operators will be available:

¶ Insert: This operator accepts one input stream and does not define any output

stream. The table schema in the remote storage system and the schema of the
tuples on the input stream must match. The operator uses a common SQL
expression to insert the incoming tuples as new rows on the destination database
table.

¶ Update: This operator accepts one input stream and does not define any output
stream. The operator uses a common SQL expression parameterized with the
fields of the incoming tuples to update rows on the destination database table.

¶ Delete: This operator accepts one input stream and defines one output stream.
The table schema in the remote storage system and the schema of the tuples on
the output stream must be matchable. The operator uses a common SQL
expression parameterized with the fields of the incoming tuples to delete rows on
the destination database table. Deleted rows are inserted in the output stream.

¶ Select: This operator accepts one input stream and defines one output stream.
The result of the select query run against the remote table and the schema of the

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 20/30

 20

tuples on the output stream must match. The operator uses a common SQL
expression parameterized with the fields of the incoming tuples to run a select
query on the destination database table. The rows belonging to the result set of
the query are inserted in the output stream.

Database operators can be used against any data store providing a JDBC driver as it is
the case with a couple of data stores in CoherentPaaS, Derby and MonetDB, but they can
also access any of the other data stores integrated in CoherentPaaS by means of the
common query language engine that it is also integrated with this operator.

3.4. CEP query compiler
The query compiler is the CEP component in charge of transforming a query written in a
human-friendly language with no information about distribution, parallelization or
deployment into an artefact runnable in the used SPE infrastructure. In particular, in the
case of using Storm as SPE infrastructure the CEP query compiler converts a query
written in the language presented in Section 4 into a Storm topology.
An en example, Figure 14 shows how the CEP Query Compiler would transform a query
written in the SQL-like language into a CEP Query.

Figure 14 ɀ An Example of transformation from a SQL -like query to the corresponding CEP Query

3.5. CEP query deployer
The task of the query deployer is to deploy the runnable query produced by the query
compiler in the SPE infrastructure. To this end, the query deployer is configured with
the necessary knowledge of the available resources in the infrastructure, and the desired

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 21/30

 21

parallelization and distribution factor for the runnable query. Using Storm as SPE
infrastructure, the query deployer sends the compiled topology enriched with the
information, provided by either the user or configuration files, about the number of
workers, executors and tasks to the Nimbus daemon running in the Master node. The
Nimbus daemon takes care of deploying and start running the topology in the Storm
Cluster.

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 22/30

 22

4. CEP Query Language
The query language for CEP allows users to easily formulate those statements able to
infer, aggregate and correlate information from one or more continuous streams of
events. Our CEP query language is defined taking into account the traditional SQL
language where the main differences are the replacement of tables with continuous
streams and rows with events. Events are the basic unit of information for CEP queries
and as for rows in a relational table all the events belonging to a specific stream must
share the same schema. In order to declare the schema of a stream the CEP query
language provides the statement CREATE STREAMSCHEMA which can be used as:

(1) CREATE STREAMSCHEMA streamname WITH (attribute1 type1, attribute2 type2ȟ ȣ

attributeN typeN)

The supported attribute types are int, long, short, byte, string, double, float and boolean.
In the same way, it is possible to create table schemas on remote data storages using:

(2) CREATE TABLESCHEMA tablename WITH (attribute1 type1, attribute2 type2ȟ ȣ

attributeN typeN)

Creating a schema for the input streams of a query also define the structure of the events
that a specific data source can send to this query.
The CEP query language being SQL-like supports the three SQL main clauses: SELECT,
FROM and WHERE. The SELECT clause specifies the list of attributes to be taken from
events. The FROM clause indicates the streams to be used in the query. Finally, the
WHERE clause is used to define the predicate that must be satisfied in order to select the
events. The comparison operators that can be used in predicates are ȰЀȟ Ѓ ȟ Є ȟ ЄЀȟ ЃЀȟ
ȦЀȰ, furthermore the WHERE clause also supports logical combination via AND & OR.

(3) SELECT ÁÔÔÒÉÂÕÔÅυȟ ÁÔÔÒÉÂÕÔÅφȟȣȟ ÁÔÔÒibuteN

FROM streamname
WHERE predicate

This query produces an unnamed stream ×ÈÅÒÅ ÔÈÅ ÁÔÔÒÉÂÕÔÅȭÓ ÎÁÍÅÓ ÃÏÒÒÅÓÐÏÎÄ ×ÉÔÈ
the names of the attributes taken from streamname. The name of the attributes can be
set using the clause AS:

(4) SELECT attribute1 AS name1, attribute2 AS name2ȟȣȟ ÁÔÔÒÉÂÕÔÅ. AS nameN

FROM streamname
WHERE predicate

Furthermore, to declare the name of the output stream produced by the query, the
INSERT INTO clause can be used:

(5) INSERT INTO streamname_out

SELECT attribute1 AS name1, attribute2 AS name2ȟȣȟ ÁÔÔÒÉÂÕÔÅ. AS nameN
FROM streamname_in
WHERE predicate

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 23/30

 23

The token * is used to select the entire ÅÖÅÎÔȭÓ ÁÔÔÒÉÂÕÔÅ set for example, it can be used to
persist the events from a continuous stream into a data storage table:

(6) INSERT INTO tablename

SELECT *
FROM streamname
WHERE predicate

Streams are potentially infinite sequence of tuples hence in order to perform
aggregation or correlation among streams CEP queries need to define one or more
windows. Windows define a finite portion of a stream over which the query is executed.
Windows can be defined either over time or over events. Both types of windows have to
be configured with the parameters size and advance.

(7) CREATE TIMEWINDOW windowname WITH (SIZE size, ADVANCE adv)

(8) CREATE EVENTWINDOW windowname WITH (SIZE size, ADVANCE adv)

Table 1 lists the aggregate operations which can be performed on one of the attributes
defined by the event schema kept in the windows. To engage a window with SELECT
queries, the CEP query language defines the USING clause.

Operation Name Description
sum Sum of values
max Maximum values
min Minimum values
avg Average of values
count Number of values
lastval Most recent value
firstval Most older value
Table 1 ɀ Aggregate operation s available on windows.

(9) INSERT INTO streamname_out

SELECT op1(attribute1) AS name1, op2(attribute2) AS name2ȟȣȟ opN(attributeN) AS
nameN
FROM streamname_in
WHERE predicate
USING windowname

The CEP query language allows running JOIN queries between 2 streams with time
windows. Tuple windows are not supported because the join results would not be
deterministic.

(10) INSERT INTO streamname_out

SELECT left_attribute1 AS name1, right_attribute2 AS name2ȟȣȟ right_attributeN AS
nameN
FROM leftstreamname, rightstreamname
WHERE predicate
USING leftwindowname, rightwindowname

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 24/30

 24

It is worth noting that when running a join query the following syntax assumptions
always hold:

¶ In the FROM clause, the first stream is identified as left stream and the second as

right stream.
¶ In the USING clause, the first window keeps tuples belonging to the left stream

and the second keeps tuples belonging to the right one.
¶ In the SELECT clause, ÔÈÅ ÁÔÔÒÉÂÕÔÅȭÓ ÎÁÍÅ ÍÕÓÔ ÈÁÖÅ ÅÉÔÈÅÒ ÔÈÅ ÓÕÆÆÉØ ȰÌÅÆÔ_ȱ or
ȰÒÉÇÈÔ_ȱ to specify, in case of streams containing attributes with the same name,
from which stream read the attribute.

Queries using windows can also define the GROUP BY clause to group the events in sub
windows according to the values of the attributes in the clause.

(11) INSERT INTO streamname_out

SELECT op1(attribute1) AS name1, op2(attribute2) AS name2ȟȣȟ opN(attributeN) AS
nameN
FROM streamname_in
WHERE predicate
USING windowname
GROUP BY attribute1, ÁÔÔÒÉÂÕÔÅφȟȣȟ attributeN

It is worth noting that complex queries can be defined filling the FROM clause of a given
query with the streamname defined in the INSERT clause of another one.

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 25/30

 25

5. Materialization Support
As aforementioned in order to solve the impedance mismatch between the CEP and
point-in-time queries one of the mechanisms that we propose is materialization
operators that enable to see the output of CEP queries as relational tables.

To this end a new CEP operator is defined by extending the behaviour of the Insert
operator.

¶ MaterializeStream: This operator accepts one input stream and does not define

any output stream. The table schema in the remote storage system and the
schema of the tuples on the input stream should match. The user has to configure
how the operator inserts tuples in the table choosing between two write profiles:
append and circular.

On the one hand, with the append profile the operator keeps adding new rows in the
table as new tuples are received, on the other hand using the circular profile, a
persistent circular buffer is used and any time the operator inserts a new row also
deletes all the rows older than the size of the circular buffer. The size of the circular
buffer is based on the number of rows currently stored in the table. To use this
functionality the CEP query language provides the PERSIST clause. This clause can be
configured either with the append token to use the append profile or with a natural
number n to use the circular profile with a circular buffer of size n.

Figure 15 ɀ Example of MaterializeStream Operator

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 26/30

 26

(12) INSERT INTO tablename
SELECT *
FROM streamname
WHERE predicate
PERSIST append | n

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 27/30

 27

6. Integration with Holistic Transactions
CEP systems since are in-memory processing systems they do not have the notion of
transactions. Additionally, tuples are handled fully independently which makes difficult
to define the notion of a transaction.

Since in CoherentPaaS, the CEP system is being integrated with other data stores that
are or will become transactional, we have to find a way to provide transactional
semantics for the CEP queries. We have split the problem into two different concerns,
read consistency and write atomicity.

6.1. Transactional Read Consistency for CEP
Transactional semantics in CoherentPaaS relies on snapshot isolation. This means that a
transaction should observe a consistent snapshot as of start time. In the case of the CEP
system we can provide a similar kind of consistency for the database reads perform by
databases operators. Unfortunately, there is no notion of transaction, so how can this
read consistency be provided and based on what?

Since the unit of processing in the CEP system are tuples, we have studied what can be
done so this processing of an individual tuple is read consistent. One of the challenges is
that each time a tuple traverses a CEP operator can be transformed or contribute to a
state that will be later propagated by another tuple. This is where read consistency
becomes important.

In Storm, tuples are injected in the CEP system via spouts. We have decided to integrate
transactional management with each spout. In this way, we can insert information in
tuples injected in the CEP that can help us to provide consistent reads. Basically, we have
added a new function accessible to applications to get the current snapshot. With this,
the spout adds to each tuple the current snapshot. Whenever a tuple is processed by a
stateless operator and generates another tuple, the snapshot value is propagated.
Stateful operators are more complex since the tuples that they output typically reflect
the contribution of several input tuples. In this case, consistency lies in that the resulting
tuple observe in any database read a state that is consistent with all tuples that
contributed to the tuple. Since tuples can be aggregated and correlated together, we also
need to have a way to propagate a consistent snapshot value. In the case of joins, a tuple
resulting from the join of two tuples will carry the highest snapshot from the two. In the
case of aggregates, a tuple resulting from the aggregation of the tuples in a sliding
window will carry the highest snapshot value among all the tuples. Figure 16 shows 2
examples of snapshot value propagation, one with a stateless operator (such as Map)
and one with a stateful operator (such as Aggregate). For simplicity, we only show the
snapshot value filed of the tuple hiding the rest of fields. With the Map operator each
output tuple has the same snapshot value as the input tuple that triggered the output.
The Aggregate operator in Figure 16 is defined with a tuple based sliding window with
size 3 and advance 1. Any time the window is full the operator emit a tuple using a
snapshot value the highest value available among the tuples in the window.

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 28/30

 28

Figure 16 ɀ Example of snapshot value propagation

With the proposed mechanism, we can provide a monotonically increasing snapshot
consistency to the CEP system so when a tuple is correlated with a data store state it
observes a consistent state across the whole CEP query.

6.2. Transactional Write Consistency for CEP
In the case of updates, as it happens with regular transactional databases, write
consistency can only be specified by the user by bracketing transactions. The alternative
that we have chosen for this is to allow spouts to bracket transactions. There are two
modes, the auto-commit mode and the bracketing mode. In auto-commit mode any
update performed by a database operator on behalf of a tuple will be a single
transaction. In the bracketing mode, a spout can decide to process a batch of tuples (in
the storm sense) as a transaction.

The batch of tuples will be associated with a start timestamp as a regular transaction in
any CoherentPaaS data store. The propagation of this information follows the same
strategy as explained in the previous section for providing read consistency in the
absence of transaction bracketing. However, these batches of tuples that are initially
batched together can follow different paths within a CEP query. Since a global
transaction of them would require too much coordination, we have decided that all
tuples belonging to the same batch that are processed by a given database operator they
are dealt with by that database operator as a single transaction. The database operator
will open a transaction, then process the batch performing as many updates as tuples,
and finally commit the transaction.

6.3. Integrating Transactional Management
Since integrating local transactional managers with spouts might have an impact when
there is a failure in provoking a recovery process that would be unneeded we have
decided to integrate the transactional processing through a JDBC driver of our SQL data
store. In this way, failures of a spout node do not have a negative impact in the
transactional and persistent data management. For this purpose, the JDBC driver API
will be extended to enable to get a start timestamp and force it at other JDBC drivers.

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 29/30

 29

Updates require the integration of database operators with a JDBC driver as it happens
with the spouts. Using a JDBC driver instead of a local transactional manager has the
same motivation as before.

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 30/30

 30

7. References
[1]. Storm Powered By. Web Page: https://github.com/nathanmarz/storm/wiki/powered-by Last

visited (19/03/2014)
[2]. Storm Project ɀ GitHub. Web Page: https://github.com/nathanmarz/storm Last visited

(19/03/2014)
[3]. Eclipse Public License 1.0. Web Page: http://opensource.org/licenses/eclipse-1.0.php Last visited

(19/03/2014)
[4]. Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed. 2010. ZooKeeper: wait-free

coordination for internet-scale systems. . In Proceedings of the 2010 USENIX conference on USENIX
annual technical conference (USENIXATC'10). USENIX Association, Berkeley, CA, USA, 11-11

[5]. Storm Tutorial. Web Page: https://github.com/nathanmarz/storm/wiki/Tutorial Last visited
(19/03/2014)

[6]. Understanding the parallelism of a Storm topology. Web Page
https://github.com/nathanmarz/storm/wiki/understanding-the-parallelism-of-a-storm-topology Last
visited (19/03/2014)

[7]. Storm Concepts. Web Page https://github.com/nathanmarz/storm/wiki/concepts Last visited
(19/03/2014)

[8]. LMAX Disruptor. Web Page http://lmax-exchange.github.io/disruptor/ Last visited (19/03/2014)
[9]. M. Noll. Web Page http://www.michael-noll.com/blog/2013/06/21/understandingstorm-

internal-message-buffers Last visited (19/03/2014)
[10]. Donald Carney, Ugur Çetintemel, Mitch Cherniack, Christian Convey, Sangdon Lee, Greg Seidman,

Michael Stonebraker, Nesime Tatbul, and Stanley B. Zdonik. Monitoring streams - a new class of data
management applications. In 28th International Conference on Very Large Data Bases (VLDB'02), pages
215-226, 2002

[11]. Arvind Arasu, Shivnath Babu, and Jennifer Widom. The cql continuous query language: semantic
foundations and query execution. VLDB J., 15(2):121-142, 2006.

[12]. ZeroMQ Project. Web Page http://zeromq.org/ Last visited (19/03/2014)
[13]. Netty Project. Web Page http://netty.io/ Last visited (19/03/2014)

https://github.com/nathanmarz/storm/wiki/powered-by
https://github.com/nathanmarz/storm
http://opensource.org/licenses/eclipse-1.0.php
https://github.com/nathanmarz/storm/wiki/Tutorial
https://github.com/nathanmarz/storm/wiki/understanding-the-parallelism-of-a-storm-topology
https://github.com/nathanmarz/storm/wiki/concepts
http://lmax-exchange.github.io/disruptor/
http://zeromq.org/
http://netty.io/

